PROGRAMME DE COLLES DE CHIMIE PC*2

SEMAINE N°2:30 SEPTEMBRE AU 6 OCTOBRE

COURS

CHAPITRE 2 : STABILITÉ DES COMPLEXES MÉTALLIQUES EN SOLUTION AQUEUSE

- I. Présentation des complexes
- II. Étude des équilibres de complexation
- → les constantes de formation/dissociation successives sont hors programme et n'ont pas été définies. Aucune question sur le sujet, ni en cours, ni en exercice
 - II.1 Grandeurs caractéristiques
 - II.1.1 Constantes de formation et de dissociation globales
 - II.1.2 Effet chélate
 - II.1.3 Diagrammes de prédominance et de distribution
 - II.1.4 Échelle de pKd
 - II.2 Détermination de l'état final application de la méthode de la RP
 - II.2.1 Rappels sur la méthode de la RP
 - II.2.2 Exemples d'application
- III. Interactions complexation/autres échanges de particules
 - III.1 Interaction complexation réactions acido-basiques
 - III.1.1 Propriétés acides du cation métallique M
 - III.1.2 Propriétés basiques du ligand L
 - III.2 Interaction complexation réactions de précipitation
 - III.3 Interaction complexation réactions rédox
- IV. Titrages par complexation
 - IV.1 Exemple du titrage des ions calcium Ca²⁺ dans l'eau du robinet
 - IV.2 Suivi colorimétrique : choix et contraintes
 - IV.2.1 Choix de l'indicateur coloré
 - IV.2.2 Contraintes milieu tamponné
- V. Application à l'étude des diagrammes E-pL

CHAPITRE 3: APPLICATION DU PREMIER PRINCIPE À LA THERMODYNAMIQUE CHIMIQUE

- I. Premier principe de la thermodynamique
 - I.1 Énergie interne U
 - I.2 Enthalpie H
- II. Grandeurs standard
 - II.1 État standard
 - II.2 Système standard
- III. Variation d'enthalpie pour une transformation isotherme et isobare
 - III.1 Enthalpie standard de réaction
 - \rightarrow On sera toujours dans le cadre de l'approximation d'Ellingham les lois de Kirchhoff sont hors programme
 - III.1.1 Définition
 - III.1.2 Influence de la température
 - III.2 Cas d'une transformation isotherme et isobare

IV. Détermination des enthalpies standard de réaction

- **IV.1 Conventions**
 - IV.1.1 État standard de référence d'un élément
 - IV.1.2 Enthalpie standard de formation d'un constituant physico-chimique
 - IV.1.3. Loi de Hess
- IV.2 Enthalpies standard de réactions particulières
 - IV.2.1 Réactions d'atomisation et de combustion
 - IV.2.2 Enthalpie (de dissociation) de liaison ou énergie de liaison
 - IV.2.3 Chaleur latente standard de changement d'état
- → pour toute autre enthalpie de réaction mise en jeu en exercice, on donnera une définition (énergie d'ionisation, affinité électronique, énergie réticulaire, ...)
- V. Étude des systèmes en transformation adiabatique
 - V.1 Transformation adiabatique
 - V.2 Température de flamme
 - V.3 Mesure d'une enthalpie standard de réaction

CHAPITRE 4: APPLICATION DU SECOND PRINCIPE À LA THERMODYNAMIQUE CHIMIQUE

- I. Second principe de la thermodynamique
 - I.1 Énoncé du second principe de la thermodynamique
 - I.2 Interprétation de l'entropie selon Boltzmann
- II. Enthalpie libre G
- III. Différentielles des fonctions d'état
 - III.1 Identités thermodynamiques
 - III.2 Dérivées partielles de l'enthalpie libre G
 - → la relation de Gibbs-Helmholtz est hors-programme
- IV. Potentiel chimique
 - IV.I Définition
 - IV.2 Variation du potentiel chimique avec T et P
 - IV.3 Expression du potentiel chimique
 - \rightarrow la notion de coefficient d'activité est hors programme ; seuls le cas des mélanges idéaux est à connaître
 - IV.4 Relation d'Euler
- V. Applications du potentiel chimique
 - V.1 Changement de phase du corps pur
 - V.2 Osmose

TRAVAUX PRATIQUES

Conductimétrie

EXERCICES

Thermodynamique: chapitres 1 à 4

 \rightarrow pas de calcul de ΔG ou ΔS pour le moment ; application du critère d'évolution seulement pour un équilibre de phase

Chimie des solutions PCSI (acides-bases, précipitation, diagrammes E-pH)

Rémi Le Roux